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A B S T R A C T

Present-day requirements emphasize the need of saving energy. It relates mainly to industrial

companies, where the minimization of energy consumption is one of their most important tasks they

face. In our paper, we deal with the design of the so-called weather prediction system (WPS) for the

needs of a heating plant. The primary task of such a WPS is timely predicting expected heat consumption

to prepare the technology characterized by long delays in advance. Heat prediction depends primarily on

weather so the crucial part of WPS is the weather, especially temperature [7_TD$DIFF], prediction. However, a

prediction system needs a variety of further data, too. Therefore, WPS must be regarded as a complex

system, including data collection, its processing, own prediction and eventual decision support. This

paper gives the overview about existing data processing systems and prediction methods and then it

describes a concrete design of a WPS with distributed data measuring points (stations), which are

processed using a structure of neural networks based on multilayer perceptrons (MLP) with a

combination of fuzzy logic. Based on real experiments we show that also such simple means as MLPs are

able to solve complex problems. The paper contains a basic methodology for designing similar WPS, too.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The pressure to companies with large energetic consumption as
e.g. power and heating plants caused by steadily growing prices as
well as environmental needs forces them to provide their services
with minimal surplus of expended energy as really necessary. Such
an approach requires a very accurate estimation of needed energy
for safe securing their operation in advance. In other words, they
need accurate prediction for planning not only energy supply but
all other activities connected with this one as its purchase and
preparing technology as well. More concretely, in the case of heat
producers accurate weather and energy consumption prediction
plays a key role in the production economy.

However, a weather prediction system (WPS) does not represent
only weather prediction in this case but it is a group of tasks
including data collection from various sources, their management,
evaluation, own prediction and its interpretation as well as use
for needs of planning and setting up technologies being used in
the production process. All these parts create a process chain and
are mutually influenced. Therefore, they cannot be considered
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separately. Besides these common features further tasks and
means depend on specific needs of a given plant as its size, in our
case used production and heat transportation technology where
further influences play a certain role as geographic and climatic
properties of the given area, of course population size but also such
apparent details like life style of the population and structure of
industry. We can see these aspects are in some way interconnected
by weather situation but the heat production does not depend only
on weather [1]. A more sophisticated WPS should also provide at
least some direct proposals and advices for heat production and
distribution prediction, which are the final required parts of
information for the plant management.

In other words, the mentioned concept of a WPS points, in a
more or less measure, at the need of mutual interconnection of the
four aspects, namely computers, cognition, communication and
control to fulfil given tasks of such a system.

With the aim to describe the sketched properties and design
process of such a WPS the paper is organized as follows. Section 2
deals with the structure and its parts, which form a WPS from the
functional point of view in general. Concurrently, it deals with a
brief overview of methods used in weather prediction. This section
is a state-of-art digest in this application area. In Section 3 a
concrete WPS design for needs of a heating plant is discussed.
Especially, its parts for data collection and heat power prediction
are described in detail. Section 4 deals with experiments and their
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evaluation, which were done with real data. Finally, Section 5
summarizes main contributions and offers possibilities of further
development.

2. WPS structure and weather forecast methods

A WPS can be divided at least into two functional parts – Data

Collection and Management (DCM) system and Own Prediction (OP)
system, see Fig. 1. The manner how data are collected influences
methods used in the OP part, which is crucial for the quality of
results, relating not only to their precision but also to versatility of
their use. Therefore, requirements put on such a system are
backpropagated from desired outputs through methods being able
to acquire them and finally to the structure of the DCM system.
There are several basic types of DCM and OP systems, which will be
briefly mentioned and as a result of their comparisons we will draft
a WPS proposed for a centralized heating plant in the city Košice
located in the eastern part of Slovakia.

2.1. WPS structure

A DCM system consists of two, eventually up to four parts. The
first part, data collector, is responsible for collecting data, which
will be processed in the OP system. There can be diverse sources,
formats as well as types of data. Principally, they can be obtained
either from a centralized source like a weather forecast agency or a
network of own measurement points (stations) distributed in a
given area. Mainly in the latter case various tasks are performed
from data transmission, through their pre-processing (e.g.
normalization, correctness checks), transforming to a required
data format up to including them to a database [2– [8_TD$DIFF]5]. Data

evaluator as the second part of DCM contains such operations as
statistical evaluations, modelling uncertainties (e.g. probability,
fuzzy) and data mining [6–9]. Its role is to prepare all data in a
required form for the OP system. The third part, results presentation,
is responsible for transforming all data, including also results from
OP, to a suitable form for the user that can be the plant
management or another information system. Here, we can
mention works dealing with correct presentation of results about
weather forecast for various humans [10]. Decision supporter is the
last part of the DCM system, which relates to decision support
tasks in the form of planning [11–14], warning [4,15,16] or some
other advisory and control functions [17–19], which are final
outputs of WPS. The last two parts of DCM are not mandatory and
in simpler applications they can be merged with the data evaluator
(marked in Fig. 1 as dashed blocks).
[(Fig._1)TD$FIG]
Fig. 1. Structure of a weath
Weather forecast (prediction), as a core of the OP system, is a set
of several variables such as temperature, humidity, precipitation,
wind speed and power, cloudiness, eventually further special ones,
which depend on the purpose we need for. Although these
variables are of different physical nature they are mutually
dependent. Often this fact enables us to utilize one method
originally developed only for one variable but after necessary
modifications also for others.

Basically, weather can be forecasted in two ways, either using
the physical or mathematical one [20,21]. (In the latter case the
notion prediction is more used.) In general, it can be stated that
physical modelling, which is based on hydrodynamic atmospheric
models, especially air mass movement modelling, using meteoro-
logical approaches, is advantageous for long-term predictions on a
larger area (global scale forecasting). Mathematical modelling
based on statistical evaluation of time series and their prediction is
convenient mainly for short-term predictions on a local area (local
scale predicting) [22]. Of course, it is not easy to unambiguously
determine, which of these two cases should be used because many
exceptions exist and we know mesoscale forecasting, too.
Therefore, in many systems combinations of both approaches
are designed [20,23,24].

Usually, weather agencies use physical air mass movement
modelling with the finite element method to forecast weather for
large areas like for a particular country or for the whole globe. The
local time series prediction is usually focused to a single place on
the map. Thus the accuracy evaluation for these two approaches is
different, too. In the local time series prediction method the error is
counted like in financial markets – the difference between
predicted and real value over given time period. The physical air
mass movement modelling does count the area on map, where the
error is bigger than a given threshold, e.g. more than two degrees.
In the first case the error can be measured in degrees of
temperature, while in the second one it is in square kilometres.

2.2. Weather prediction methods

As for our purposes the local scale predicting is especially
important we will deal mainly with methods used for mathemati-
cal approach. Originally, for weather prediction the conventional
statistical methods based on building linear models were applied
[25]. Their basic task is analysis of time series of measured
variables. However, meteorological data lack for accuracy and
often completeness, too. Data are affected by various kinds of
uncertainty and perturbations. To solve this problem more
sophisticated methods based on stochastic models were proposed
er prediction system.
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[26]. Besides, further means like Kalman filter [27] or wavelet

transform [28] are added to these models to enhance their
precision. There is still one other mathematical approach also
related to the physical one, the so-called ensemble forecasting. In
this case not only one deterministic forecast is calculated but a set
(ensemble) of forecasts is modelled under slightly different initial
conditions in parallel. So we obtain several alternatives with
probabilities of their occurrence, which can be offered as they are
or merged into one averaged forecast. In such a manner various
uncertainties and possible perturbations are covered [29,30].

However, models based on ‘conventional’ statistical approaches
need to be parameterized, which is not a simple task. At this point
cognitive means, which mostly belong to the field of artificial
intelligence, offer possibilities of automatic adjusting these
parameters. Especially, artificial neural networks (NN) are advanta-
geous for analyzing time series and we can find them in many
papers dealing with prediction in general. Concerning weather
prediction there have been proposed several prediction systems
using various types of NNs, from simple multilayer perceptrons

(MLP) [31,32], through more complicated types like recurrent NNs
[33,34] up to hybrid combinations with other means of artificial
intelligence as fuzzy logic for possibility of processing uncertain
information, especially the well known architecture ANFIS [22], or
evolutionary algorithms [35] for adjusting the parameters of NNs,
e.g. NN with particle swarm optimization (PSO) [36] or NN with
migration algorithm [37].

Further means from the area of cognition, as an element of
machine learning, is the so-called support vector machine (SVM),
whose role is to adjust parameters of the prediction model. As in
the case of NNs also SVMs need a set of training data, which are
used for regression analysis done by a selected SVM, whose
outputs are the mentioned parameters [38]. Similarly, also SVMs
can be combined with other means as e.g. PSO [39,40].

Finally, for the sake of completeness the hybridization of
cognitive and conventional statistical methods should be men-
tioned, too. Either these approaches cooperate solving each one its
own tasks or one approach helps in adjusting parameters of the
other one. We can find mostly combinations of NNs with such
means as Kalman filters, wavelets or Markov chains [41–43].

3. WPS implementation for the heating plant

Based on knowledge contained in the overview in Section 2 as
well as experience with a weather prediction system for a heating
plant for a city numbering the population of about 250,000
inhabitants we proposed basic modules of a WPS tailored for
specific needs of this plant as well as several auxiliary modules
(further modules are just in the stage of their implementation and
testing). Based on notions explained in Section 2 we can define it as
a local prediction system performing mainly temperature predic-
tions, which utilizes measured data collected from own distributed
measurement points (MP), further public data and forecasts from
agencies. Besides, some specific technological data of the company
are contained in the system, too. Therefore, it can be divided into
two functional blocks: MP(s) and prediction system, which will be
described in the following parts.

3.1. Design of a measurement point

There were two reasons why we choose the design of a
distributed WPS utilizing also own measurements. Firstly, local
prediction is more precise because global prediction is based on a
larger region so it cannot consider local singularities. The
geography of the city Košice is relatively complicated (some parts
are in a basin open to south and some other parts are on hills,
which belong to Carpathian mountains) and the consequences are
sometimes in the form of significant temperature differences.
Therefore, there is a necessity to consider needs for heat
production of these city districts individually and not globally.
In addition, a distributed WPS does not exclude a possibility to use
also global weather forecast, where local prediction can help
refining and extending agency weather forecast. Secondly, local
prediction is very flexible so it can take into consideration also
technology data and specific properties. Each plant has some
special characteristics, which do not let to be included in a general
concept so easily. Hence a kind of ’tailoring’ for its needs is
necessary. It relates to specific knowledge, experience and
company customs, too.

The designed WPS enables to collect data from a network of
MPs dispersed in the city area. At present, there are two MPs
located in different parts of the city. MP consists of a weather
station (in our case Vantage Pro2 [44]) and a control server. The
weather station is capable to measure main weather parameters
as air temperature, humidity, wind direction, air pressure, wind
speed, rainfall and others. We can control it remotely by a
private server, which is located usually up to several tens of
meters from the weather station (e.g. in the closest building).
This design enables doing contracts between the heating plant
and private providers, owners of MPs, without any necessity to
own all these stations. The private server is connected with a
public server, which is located directly in the plant control
centre, either by a WiFi or by a conventional wired connection.
The public server is connected to Internet to receive measured
data from MPs and forecasts from agencies as well as to offer the
predicted information, see Fig. 2. There is also a possibility to
locate the public server together with the MP but after creating a
network of these points the first structure is preferred. From
safety and data protection reasons the system is operated on
Linux.

If we compare our design with Fig. 1 the private server works as
a data collector besides the storage task, which is provided by a
data management system, see Fig. 5. Of course, the private server
controls and checks the function of the weather station, too.
Further, the weather station can be observed by a supervisory
camera giving visual information about the state of the station and
hereby it minimizes the need to check it directly on the place. The
public server communicates with the database and performs tasks
of other three parts of WPS.

The presentation of WPS results can be summarized for the
whole city or it can be addressed for each MP individually in the
form of a web page, which is updated every 15 min. Fig. 3 shows
the output web page for one MP (publicly available, see [45]),
which contains identification name of a given MP, current weather
situation (for comparison needs), current picture of the weather
station (for transient checking) and scrollable graphs with
predictions and input data. A more detailed information about
the MP hardware and software construction can be found in [46].

3.2. Daily temperature profile and heat production prediction

One of our aims was to verify ability of NNs to solve complex
prediction problems, where meteorological data are connected
with a given technology as e.g. temperatures of heating boilers,
temperature of returning water, etc. Although numbers of complex
NNs types and auxiliary means as SVM, PSO, etc. exist (already
mentioned in Section 2.2) they bring also new problems. The first
of them is the necessity to adjust further parameters of these more
sophisticated designs. It relates to both NNs and auxiliary means.
In general, these parameters are more abstract than parameters of
a simple MLP and the preparation of such systems can be more
time consuming than adjusting the topology and learning
parameter for backpropagation training.
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Fig. 3. Screenshot of the output www page describing a MP together with current

weather situation and predicted variables.
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The basic backpropagation procedure is simple. It was
developed in the seventies and eighties by Werbos and Rumelhart
(see a summary in [47]). It is a recursive gradient method for
setting up weights for a neural network to minimize the training
error J defined by:

J p ¼ 1

2

XN0

i¼1

ðev p
i � x p

i Þ
2
; (1)

where N0 is the number of [9_TD$DIFF]outputs, evi is the expected value of the
ith output, and p is the pattern index from the training set. For
every neuron we have:

xi ¼ f iðiniÞ ¼ f i

XM

j¼1

wijx j þ ui

0
@

1
A; (2)

where ini is the input to ith neuron, fi is its activation function, M is
the number of its incoming connections, wij is the weight of
connection from j to i and ui is the neuron bias. The gradient-based

minimization rule for computation of weight changes is:

Dwij ¼ �g
@J

@wij
¼ �g

@J

@ini

@ini

@wij
¼ gdix j; (3)

where g is the so-called learning rate parameter and di is a
substitution variable called as error signal. To compute di of the
output units we get:

di ¼ �
@J

@ini
¼ � @J

@xi

@xi

ini
¼ � @J

@xi
f 0ðiniÞ ¼ ðevi � xiÞ f 0ðiniÞ: (4)

For the rest of neurons (not output ones) we must apply a chain
rule for distributing the error signal recursively through the whole[(Fig._4)TD$FIG]
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where Nh is the number of neurons with connections from the ith
neuron and Nl is the number of neurons, which have connections to
all Nh neurons (Fig. 4).

The rule (5) is the main recursive rule of the backpropagation
learning describing the recursive backward propagation of the
error signal from network outputs to inputs. Then we compute
changes of weights from the error signal using the rule (3) and
subsequently we change the weights.

Finally, the full algorithm is as follows:
1. In
ith
itialize random weights.

2. E
nter inputs and compute outputs of the network.

3. R
ecursively compute di.

4. C
ompute changes of weights Dwij.

5. A
pply Dwij
Nh

backpropagation learning.
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Fig. 5. Implementation of proposed WPS in the heating plant information

infrastructure using the data management system IPESOFT D2000.
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Fig. 6. A NNs structure of the OP system for temperature and heat prediction. The

structure consists of two parts [3_TD$DIFF]: (a) main predictions; (b) auxiliary predictions.

Dashed connections are for optional extending 1-week and 1-year predictions to

DTPs.
epeat the process in points 1–5 until the error is not
minimized.

There exist a lot of modifications of this basic backpropagation
algorithm but for our prediction system this basic version was
satisfactory.

Although it is necessary to design more or less intuitively
(depending on designer’s skills) several variants of MLPs and
subsequently to do some experiments but it is not so much
arduous as obviously supposed in the literature. Another problem
is connected with the need to implement some particular
properties of the plant technology in the prediction system.
Thanks to the MLPs simplicity they enable building and analyzing a
network of them quite easily, see Fig. 5. The problem can be in such
a manner decomposed and each part solved partially whereas
complex designs try to solve the whole problem in an all-in-one
way. Therefore, we relied on skills and communication with the
user, concretely with the control centre staff.

The database is an indispensable part of the prediction system
because it stores all necessary data for prediction. As there are
necessary further operations as handling and updating data, a data
management system is needed. In our case it is the system IPESOFT
D2000 [48]. It collects data from MPs, Internet and technology
sensors as well as it stores outputs from the OP system. Of course, it
also communicates with operators in the control centre and
enables their access to WPS, see Fig. 5.

The OP system consists of seven MLPs, which are mutually
chained, see Fig. 6. These MLPs are standard feedforward NNs with
one hidden layer. They are trained by a momentum back-
propagation algorithm using time windows. Five NNs predict
temperature for various time intervals – 1 day, 1 week, 1 year – and
two other NNs predict the amount of heat needed to be produced,
which is computed by two variables, i.e. steam power and total

steam power, which includes also production of hot water. The
basic prediction step is for 15 min, i.e. all MPs, technology sensors
as well as downloading operations of forecasts from agencies are
performed in this interval.

Now we characterize tasks of individual NNs NN1–NN7 (Fig. 6).
NN1 (Fig. 7) is doing basic temperature prediction for next 24 h, the
so-called daily temperature profile (DTP) containing 96 values
(24 h � 15 min intervals). It uses data of last 3 days from MPs and
technology data. This prediction is important for immediate
adjusting the technology to produce just required amount of heat
(neither less nor more). Other predictions are more auxiliary and
serve as certain verification of DTP correctness.

NN2 utilizes the same data as NN1 extended by data from
weather forecast agencies. Nowadays data from three different
agencies are collected, which are averaged. NN2 should reinforce
the forecasts from agencies and in future it should replace NN1.

NN3 plays a specific role. It is doing a simplified DTP prediction
only from minimum and maximum temperatures of last 3 days. It
takes into consideration also the day order (1–365) so the number
of inputs has 9 values (3 day values � 3 days). Of course, the results
are not so much precise than for NN1 and NN2. It is used only as an
interpolation mean for next two NNs.

NN4 is designed for a 1-year prediction of minimum
and maximum temperatures (365 days � 2 temperatures, i.e.
730 values), which is based on weekly minimum and maximum
temperatures of last 3 years. This prediction is from meteorological
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viewpoint a nonsense but from statistical point of view we can
more or less rely on weather character of the previous period and
deduce future weather to some extent. NN4 can be combined by
NN3 and we will get DTPs for next year (refined 1-year prediction).
The main function of such a long prediction is for planning
purposes as doing contracts with coal and gas suppliers or
maintenance.

NN5 is a compromise between NN4 and NN1 or NN2. It generates
a 7-day prediction of minimum and maximum temperatures based
on the same data types as NN3 but from last 3 weeks
(21 days � 3 day values as in NN3 gives us 63 inputs and
14 outputs). It can be also combined with NN3.

Finally, the last two NNs predict the amount of heat for next
24 h in 15 min steps (96 outputs), i.e. NN6 and NN7 calculate total
steam power and steam power variables, respectively. They utilize
outputs from NN1, data from MPs and technology data. Based on
Fig. 6, Table 1 summarizes basic parameters of designed NNs,
which are MLPs with three layers (the first and third layer are the
NN input and output, respectively). A more detailed information
about the designed prediction system is in [49].

4. Experiments and their evaluation

The design of the OP system described in Section 3.2 was based
on consultations with experienced operators of the heating
plant. They recommended us variables, which should influence
Table 1
Summary of basic parameters of designed NNs NN1–NN7. Topology represents the

number of neurons in the input–hidden–output layer. TD is for technology data and

min/max for minimum and maximum temperature.

Topology Inputs Outputs

NN1 1008–48–96 3 days (MP + TD) Basic DTP

NN2 5616–192–96 3 days (MP + TD) + agencies Reinforced DTP

NN3 9–200–96 3 days min/max Simplified DTP

NN4 312–110–730 3 years min/max 1 year min/max

NN5 63–25–14 3 weeks min/max 1 week min/max

NN6 1104–48–96 3 days (MP + TD) + 1 day DTP Total steam power

NN7 1032–48–96 3 days (MP + TD) + 1 day DTP Steam power
prediction results. After experiments with several proposals of
various NNs topologies the best one was chosen.

For training and testing there were available 10-years data for
most NNs. For training 4-years data and for testing remaining 6-
years data were used. But we tried also other configurations and
we do recommend to use 10 or more years of data for training. The
mix of data sources we used for the heating plant system was
defined by their operating environment and was composed from
several sources inside and outside of the plant. But generally, for
temperature prediction, meteorological data from the common
meteorological station should be enough. We made available data
from our station on the project page http://www.ai-cit.sk/WPS-HP
[45].

We used linear and nonlinear time windows, where pattern
sampling is dense for close past and then it is enlarged (1-h
sampling for yesterday, 3-h sampling for the day before yesterday
and 6-h sampling for the day before it). Motivation for this type of
sampling is that experiments showed that most influencing data
for tomorrow 24-h prediction are data from last 3–4 h of past.
Further, after training we found the weights on links from
temperature inputs were relatively high comparing to other
inputs (which were also non-zero). Thus we think the temperature
from past is more important for temperature prediction than
humidity, wind or other weather variables.

We tried configurations with 2-days, 4-days, etc. long time
windows on the input. We chose the 3-days long windows as the
maximal length, which contributes any improvement to accuracy
of the predictor with our size of training data (10 years). We had no
problem with the number of inputs (1000 or 5000 inputs) as with
our configuration of network (see Table 1). The learning times were
sufficiently short so we had no motivation for further selecting
inputs for the predictor. The backpropagation algorithm does it
conveniently for us.

For each NN an evaluation was performed on data from 1 year
and using a percentage modification of the mean squared error

formula (MSE) the errors for training as well as testing data were
computed, see Table 2. NN1 confirmed our expectations of the best
predictor. However, after designing a fuzzy controller for weight-
ing forecasts from agencies we expect NN2 will move to the first
position. Besides, although expected results of other NNs are a little
worse but not so much. We can use them as auxiliary predictors if
NN1 could not be used from any reason or for instance planning.

In Fig. 8 there are shown two comparative examples of real and
predicted values and evaluations of all NNs are shown in
Table 2. We consider these results as of good quality from two
reasons. Firstly, we have only local data as an input of the predictor.
As we have no information about coming storms, each sudden
storm will make several degrees of error for a given day. Secondly,
experts in the heating company considered these predictors as
sufficient for their intended usage. However, these results are not
the best possible ones and we proposed further improvement
Table 2
Percentage errors of NN1–NN7 during 1 year computed on training and testing data

after performing a given number of training cycles. Because of testing data lack NN2

the testing was not performed. The 100 from 1458 training patterns means

100 randomly selected patterns from 4 years (4�365 days).

Training data

error [%]

Testing data

error [%]

Number

of cycles

Training

patterns

Learning

rate g

NN1 4.1 11.4 600 100 from 1458 0.1

NN2 4.1 – 500 100 from 105 0.3

NN3 7.7 10.3 400 100 from 1458 0.1

NN4 10.2 13.1 300 3 from 10 0.1

NN5 12.8 12.9 300 4717 0.01

NN6 17.7 48.4 300 100 from 1458 0.2

NN7 10.5 24.1 300 100 from 1458 0.2

http://www.ai-cit.sk/WPS-HP
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(network NN2) combining a statistical (based on neural networks)
predictor with meteorological agency forecasts.

5. Conclusions

This paper describes the methodology and basic know-how for
constructing a compact WPS for industrial needs. Our WPS design
offers possibilities of its use not only for the heating plant company
but thanks to its flexibility and openness it can be used also for
other institutions and companies, e.g. for weather research,
transportation and alert systems [50,51], etc. Of course, using
web pages of individual MPs also the public can be informed about
current local weather conditions.

From the viewpoint of the prediction method used we showed
also a relatively complex problem can be solved with high quality
and technological acceptance by simple MLPs with time windows
if they are arranged in a proper NNs structure without a need to use
complicated solutions. Even the heating plant management prefers
the designed prediction based on NNs rather than standardized
temperature modelling offered by agencies. However, it is
necessary to state in consequence of climatic changes, which
have been remarkable also in the city since last 15–20 years,
physical weather modelling cannot be neglected but this system
allows connecting both approaches, i.e. statistical and physical.
Our own statistical approach serves as a refinement of forecasts
based on physical modelling generated by weather forecast
agencies.

The research in improving the prediction quality continues and
as next steps we see including further weather variables, especially
wind speed and cloudiness. Some initial experiments show
promising improvement. Similarly, we try to apply further types
of NNs, concretely recurrent NNs [52].

In our WPS fuzzy systems have a special position as auxiliary
means for data handling and improving for further use by NNs. We
have detected three significant tasks, which should be solved by
means of uncertainty processing, namely: merging data from MPs
to calculate averaged temperatures, merging forecasts from
agencies to obtain an average global forecast and continuous
connecting DTPs.

Especially the first two tasks are connected with experience and
implicit knowledge of operators, which cannot be precisely
expressed but rather by uncertain notions like small, big, slow,
etc. in production rules, which are the most common human
knowledge representation [53,54].

The first mentioned problem relates a fact that MPs have
different ranges covering different areas concerning their require-
ments on heat (population, institutions, offices, etc.). For needs of
merging data from MPs it is necessary to assign to individual MPs
weights of importance, which are calculated using a fuzzy
controller.

The second problem is of similar nature as the first one. For
needs of NN2 (see Fig. 6) the information of global weather forecast
is necessary, too. The forecasts are collected from three agencies.
Their qualities differ to some extent and are not constant. For
instance, during rains one agency produces better forecasts than
another time. Now a design of a knowledge base is in preparation,
which will reflect various relations between forecast qualities of
these agencies with the ability of suspicious data detection [55].

The last mentioned problem corresponds to removing dis-
continuities, in other words filtering. As during prediction the time
windows are used and they do not move continuously but frame by
frame an effect of discontinuity happens. Its solving is a typical
interpolation problem but instead of applying an artificial
polynomial function we try to use real values from both DTPs.
Also this problem is researched intensively now and first
experiments show promising results.

However, the potential of fuzzy systems is considerably
broader. They can be used for transforming the prediction results
in a more comprehensive form for human perception [10,56],
maybe later their personalization for a concrete user. Now we are
experimenting with some adaptation approaches of knowledge
bases for fuzzy systems [57,58].

As seen, the proposed WPS represents a case in point how the
four aspects, i.e. computers, cognition, communication and control
are mutually merged into one integral entity, where they create a
networked prediction system for decision support (if not directly a
control system) with use of some cognitive approaches in form of
NNs and fuzzy systems being able to process the whole
computation by means very close to human reasoning.
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J. Vaščák et al. / Computers in Industry 74 (2015) 110–118 117
[2] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. Nefedova, J.
Lee, A. Sim, A. Shoshani, B. Drach, D. Williams, D. Middleton, High-
performance remote access to climate simulation data: a challenge problem
for data grid technologies, Parallel Comput. 29 (10) (2003) 1335–1356, http://
dx.doi.org/10.1016/j.parco.2003.06.001, High Performance Computing with
Geographical Data.

[3] R. Lee, J. Liu, iJADE WeatherMAN: a weather forecasting system using
intelligent multiagent-based fuzzy neuro network, IEEE Trans. Syst. Man
Cybern. C: Appl. Rev. 34 (3) (2004) 369–377, http://dx.doi.org/10.1109/
TSMCC.2004.829302.

[4] L.B. Sheremetov, M. Contreras, C. Valencia, Intelligent multi-agent support for
the contingency management system, Expert Syst. Appl. 26 (1) (2004) 57–71,
http://dx.doi.org/10.1016/S0957-4174(03)00107-6, Intelligent Computing in
the Petroleum Industry, ICPI-02.

[6] X. Chu, R. Buyya, Service oriented sensor web, in: N. Mahalik (Ed.), Sensor
Networks and Configuration, Springer, Berlin/Heidelberg, 2007, pp. 51–74,
http://dx.doi.org/10.1007/3-540-37366-7_3.

[6] Y. Cai, G. Huang, Z. Yang, Q. Tan, Identification of optimal strategies for energy
management systems planning under multiple uncertainties, Appl. Energy 86
(4) (2009) 480–495, http://dx.doi.org/10.1016/j.apenergy.2008.09.025.

[7] B.-c. Wu, B. Ma, M. Li, R.-r. Zheng, Y.-n. Yang, Automobile tire pressure and
temperature forecast base on grey model, in: IEEE International Conference on
Computer Science and Automation Engineering (CSAE), Vol. 2, 2012, 702–705,
http://dx.doi.org/10.1109/CSAE.2012.6272864.

[8] T. Meindl, W. Moniaci, D. Gallesio, E. Pasero, Embedded hardware architecture
for statistical rain forecast, Res. Microelectron. Electron. 1 (2005) 133–136,
http://dx.doi.org/10.1109/RME.2005.1543011.

[9] R. Domikis, Application of decision support methods to weather sensitive
operations, in: Fifth Conference on Artificial Intelligence Applications to
Environmental Science, 2007, 1–11.

[10] J.L. Demuth, J.K. Lazo, R.E. Morss, Exploring variations in people’s sources,
uses, and perceptions of weather forecasts, Weather Clim. Soc. 3 (3) (2011)
177–192, http://dx.doi.org/10.1175/2011WCAS1061.1.

[11] Y. Cai, G. Huang, Q. Lin, X. Nie, Q. Tan, An optimization-model-based
interactive decision support system for regional energy management systems
planning under uncertainty, Expert Syst. Appl. 36 (2, Part 2)) (2009) 3470–
3482, http://dx.doi.org/10.1016/j.eswa.2008.02.036.

[12] J.G. van der Vorst, A.J. Beulens, Identifying sources of uncertainty to generate
supply chain redesign strategies, Int. J. Phys. Distrib. Logist. Manage. 32 (6)
(2002) 409–430, http://dx.doi.org/10.1108/09600030210437951,
arXiv:10.1108/09600030210437951.

[13] A. Mammoli, Software-as-a-service optimised scheduling of a solar-assisted
HVAC system with thermal storage, in: Proceedings of the 3rd International
Conference on Microgeneration and Related Technologies, Naples, Italy, 15–17
April 2013, (2013), pp. 1–10.

[14] Y. Zhang, P. Zeng, C. Zang, Multi-objective optimal control algorithm for HVAC
based on particle swarm optimization, in: Fifth International Conference on
Intelligent Control and Information Processing (ICICIP), 2014, 417–423, http://
dx.doi.org/10.1109/ICICIP.2014.7010290.

[15] J. Thielen, J. Bartholmes, M.-H. Ramos, A.d. Roo, The European flood alert
system – part 1: concept and development, Hydrol. Earth Syst. Sci. 13 (2)
(2009) 125–140.

[16] F. Pappenberger, J. Thielen, M. Del Medico, The impact of weather forecast
improvements on large scale hydrology: analysing a decade of forecasts of the
European flood alert system, Hydrol. Process. 25 (7) (2011) 1091–1113, http://
dx.doi.org/10.1002/hyp.7772.
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[52] J. Koščák, R. Jakša, P. Sinčák, Stochastic weight update for recurrent networks,
in: Joint 7th International Conference on Soft Computing and Intelligent
Systems and 15th International Symposium on Advanced Intelligent Systems
(SCIS & ISIS 2014), Kitakyushu, Japan, (2014), pp. 807–812.
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